
CPS311: COMPUTER ORGANIZATION

Translation Patterns for Typical Higher Level Language Constructs

In what follows, the "C's" are any boolean condition, the "S's" any executable statement, the "L's" are
arbitrary labels, "E" is an ordinal expression, and the "V's" are constants of the same type as E.

Higher Level Language (e.g. C)	
 Assembly Language
goto L;	 	 	 Branch to L
--
if (C)	 	 	 Branch if C is false to L1
	 S;	 	 	 Code for S
	 	 	 L1:
--
if (C)	 	 	 Branch if C is false to L1
	 S1;		 	 Code for S1
else		 	 	 Branch to L2
	 S2;		 L1:
	 	 	 	 Code for S2
	 	 	 L2:
--
if (C1)	 	 	 Branch if C1 is false to L1
	 S1;		 	 Code for S1
else if (C2)	 	 Branch to Le
	 S2;		 L1:
...	 	 	 	 Branch if C2 is false to L2
else if (Cn)	 	 Code for S2
	 Sn;		 	 Branch to Le
else		 	 L2:
	 Sf;		 	 ...
	 	 	 	 Branch if Cn is false to Ln
	 	 	 	 Code for Sn
	 	 	 	 Branch to Le
	 	 	 Ln:
	 	 	 	 Code for Sf
	 	 	 Le:
--
while (C)	 	 Branch to L2
	 S;		 L1:
	 	 	 	 Code for S
	 	 	 L2:
	 	 	 	 Branch if C is true to L1
--
do	 	 	 L1:
	 S;		 	 Code for S
while (C);	 	 Branch if C is true to L1
--
for (V = L; V <= H; V++)	 	 Code to set V = L
	 S;		 	 Branch to L2
	 	 	 L1:
	 	 	 	 Code for S
	 	 	 	 Code to increment V
	 	 	 L2:
	 	 	 	 Branch if V <= H to L1

1

switch(E)	 Two options
{	 	 	 	
	 case V1:	 If the set of values forms a dense set (i.e.
	 	 S1;	 includes all or most of the values in the range
	 	 break;	 V1 .. Vn):
	 case V2:	 	 	
	 	 S2;	 • Translate the statements using the
	 	 break;	 following pattern. (Assume values are
	 case V3:	 sorted in ascending order from V1..Vn)
	 	 S3;
	 	 break;	 L1:	 Code for S1
	 ...		 	 Branch to Le
	 case Vn:	 L2:	 Code for S2
	 	 Sn;	 	 Branch to Le
	 	 break;	 L3:	 Code for S3
	 	 	 	 Branch to Le
	 default:	 	 ...
	 Sd;		 Ln:	 Code for Sn	
}	 	 	 	 Branch to Le
	 	 	 Ld:	 Code for Sd
	 	 	 	 Branch to Le

	 	 	 • Create a jump table, structured as
	 	 	 follows: (If any value is missing, put
	 	 	 Ld address	 in its slot in the table)

	 	 	 Lc:
	 	 	 	 L1 address;
	 	 	 	 L2 address;
	 	 	 	 L3 address;
	 	 	 	 ...
	 	 	 	 Ln address

	 	 	 • Translate the switch instruction as
	 	 	 follows

	 	 	 	 Code to evaluate E
	 	 	 	 Branch if E < V1 or > Vn to Ld
	 	 	 	 Set temp = (E-V1) * size of address
	 	 	 	 Branch to address in Lc[temp]
	 	 	 Le:

	 	 	 Alternate

	 	 	 (Always applicable). Translate as if written:
	 	
	 	 	 	 temp = E;
	 	 	 	 if (temp == V1)
	 	 	 	 	 S1;
	 	 	 	 else if (temp == V2)
	 	 	 	 	 S2;
	 	 	 	 ...
	 	 	 	 else if (temp == Vn)
	 	 	 	 	 Sn;
	 	 	 	 else
	 	 	 	 	 Sd;

2

